Engineering Technologists and Engineers – What is the Difference?

This is the second in a series of articles about the licensure of engineering technologists in the U.S. The first article described the current status of licensure of technologists as professional engineers and indicated that some 17 jurisdictions do not provide a pathway for technologists to become licensed, while the balance of the jurisdictions do, generally requiring additional years of engineering experience, averaging about six years. Licensure as a professional engineer requires a technologist to pass both the FE and PE examinations, which address a technical engineering body of knowledge, and not necessarily an engineering technology body of knowledge. This article will describe the differences between educational accreditation criteria and typical curricula for engineers and technologists. This discussion of engineering technology is limited to accredited four-year degrees in engineering technology, not two-year technology degrees by which technicians are educated.

There is a huge difference in the number of graduates annually. Data presented on the American Society for Engineering Education Web site indicate that there were about 6,400 baccalaureate degrees awarded in 2012 in engineering technology in the U.S. This compares to over 88,000 baccalaureate degrees in engineering awarded in 2012, an all-time high.

Engineering and Engineering Technology Accreditation Criteria
ABET accreditation criteria are prescribed by means of “general criteria” that apply to all disciplines and “program criteria” that are established and apply to each specific discipline. For engineering, the accreditation criteria are those of the ABET Engineering Accreditation Commission (EAC), and, for engineering technology, the criteria for the ABET Engineering Technology Accreditation Commission (ETAC) apply. The differences between the general criteria are subtle but significant, summarized in the following fashion. These are examples; refer to the ABET criteria at the links above to fully understand the differences.


Item
Engineering
ABET EAC General Criteria
Engineering Technology
ABET ETAC General Criteria
Mathematics
Mathematics as specified in Program Criteria-see tables below
Calculus, or other mathematics above algebra/trigonometry
Science
Basic biology, chemistry, and physics applicable to discipline
Physical or natural science
Engineering Sciences
Broadly described bridge from science to engineering
Applied science/engineering
Design
Design systems/components in broad societal context
Design systems/components to solve technology problems
Experiments
Design/conduct experiments and analyze/interpret data
Conduct tests/experiments and analyze/apply results

Next, let’s consider the differences in program criteria for two selected sub-disciplines: electrical and civil engineering and engineering technology.

Electrical Engineering and Electrical Engineering Technology Program Requirements
Item
Electrical Engineering Program Criteria
Electrical Technology Program Criteria
Mathematics
Calculus, statistics, linear algebra, complex variables, discrete math
Above algebra/trigonometry with some advanced math
Design
Analyze and design complex systems
Analyze, design, develop and implement systems
Technical Breadth
Breadth AND Depth
Breadth OR Depth
Civil Engineering and Civil Engineering Technology Program Requirements
Item
CivilEngineering Program Criteria
Civil Engineering Technology Program Criteria
Mathematics
Math through calculus/differential equations
Calculus or other math
Objective
Apply math, science, and engineering science to solve engineering problems
Technical skill to design systems
Breadth
Knowledge in four technical areas
Standard design capability in three sub-disciplines
Design
Design systems in more than one technical area
Design systems, specify methods/materials, estimate costs
Professional Practice
Management, public policy, leadership
Not specified
 

Engineering and Engineering Technology Curricula
According to data presented on the ASEE website, Purdue University graduates the greatest number of technologists in the US each year. Presented below is a very brief summary of the sample 2012-13 plan of study for electrical engineering, and for electrical engineering technology, from the Purdue University website. The major components of the typical curriculum are as follows:

Purdue University – 2012-13 Electrical Engineering Plan of Study
Math – Calculus I and II, multivariate calculus, differential equations, linear algebra and probabilistic methods
Science – Chemistry, Physics/Mechanics, Physics Elect/Magn Interactions, Science Elective
Engineering Science – Linear circuits I and II, introduction to electronics, electric and magnetic fields
Design – 10 design courses and electives

Purdue University – 2012-13 Electrical Engineering Technology Plan of Study
Math – Calculus for Technology I and II, Statistics
Science – General Physics I and II, electives
Technology and Design – 18 courses in various aspects of technology and design

The electrical engineering and electrical technology program curricula at Purdue clearly show the difference. The engineering program provides a substantially greater math background, more science, a background in engineering science and engineering design. The electrical technology program provides a much more basic background in math and science, without substantial engineering science, and with extensive technology and design content. Engineers generally are trained to analytically apply the theory and practical applications of math, science, and engineering science to design while engineering technologists are trained to apply technologies to design in what some have described as a hands-on fashion.

Both the accreditation criteria and the typical curricula cited above prescribe very different “bodies of knowledge” imparted in engineering and engineering technology education. Engineering education includes a significantly more extensive background in both mathematics and the sciences, which leads to a foundational background in engineering science. Design capability is then built on that math/science/engineering science foundation. Engineering technologists develop a basic understanding of math and science, and learn applied science and engineering built on a different foundation.

It is interesting to note that the ABET program criteria for civil engineering technology states as an objective that baccalaureate degree programs prepare graduates “to analyze and design systems, specify project methods and materials, perform cost estimates and analyses and manage technical activities in support of civil engineering projects.” In our licensure system in the U.S., each of those activities, when potentially impacting public health, safety, and welfare, need to be under the responsible charge of a licensed professional engineer, and those designs and specifications need to be stamped by a professional engineer. In one-third of the states, there is no pathway for technologists to be licensed as professional engineers. In the other two-thirds of states, technologists are required to pass the Fundamentals of EngineeringExamination, which assesses the engineering body of knowledge, and not the very different engineering technology body of knowledge, and additional years of engineering experience are required for technologists in many states. Those who review FE exam institution reports provided to technology programs indicate that the pass rate for engineering technologists on the FE exam is typically substantially lower on a national basis than the national pass rate for EAC-accredited engineering program graduates. This would be expected because the typical engineering technology education does not cover a fair amount of the FE exam content.

This begs two questions. First, is the current system appropriate? In order to become licensed, technologists are required to pass a fundamentals examination with content that was not included in their education in many technology programs. Those engineering technologists who can pass the two examinations work as professional engineers, and those who cannot, likely work as technicians. And secondly, is this a problem? I don’t know the answer to this second question. Is it a problem for technologists or employers that technologists can’t get licensed as PEs in one-third of states, and is passing the FE examination by technologists too formidable a hurdle in the other two-thirds of states? These two-thirds of states have determined that those technologists who do pass both exams, perhaps with a few more years of engineering experience for good measure, are qualified to practice as professional engineers. Is that a problem?

A subsequent article on this topic will address what is being done in some other countries with respect to licensure of technologists separate from licensure of engineers. Should we continue to license some engineering technologists as professional engineers, or does the licensure of engineering technologists merit consideration? The more I consider this topic, the more ambivalent I have come as to whether there is a sufficient problem here to consider change. Is there a problem?

Input for this article was received from: L. Robert Smith, P.E., F.NSPE; Bernard R. Berson, P.E., F.NSPE; Carmine C. Balascio, Ph.D., P.E.; Michael A. Clark, CAE; and Jon D. Nelson, P.E., Dist.M.ASCE.

Published August 15, 2013 by Craig Musselman, P.E., F.NSPE

Filed under: Engineering Technologists, ABET Engineering Technology Accreditation Commission, licensure of technologists as professional engineers, ABET Engineering Accreditation Commission,

The views expressed here are those of the author and do not necessarily represent the views of and should not be attributable to the National Society of Professional Engineers.

Comments are moderated and do not appear on the site until after they are reviewed.

Comments

I have a bachelor's degree in Civil Engineering Technology. During my senior year, I found out that I would be unable to be licensed in certain states. This was news to me. I thought that if I could get licensed in my current state, then I could get licensed anywhere. Myself and about 65% of us passed the FE exam. So I was faced with a decision...Do I go back to school somewhere else to get a BSCE? or Do I go to work wherever I can find a job and just hope that I will be okay in the long run? or Do I go to graduate school to get a Master's degree in Civil Engineering? I realized that it would be very hard to progress in my career if I would not be able to become a licensed PE in whatever state I work in.
I chose to seek a master's degree in Engineering. Some may disagree with my  reasoning but these are  some of my thoughts about it. I truely felt that my undergraduate coursework covered the majority of what most BSCE programs cover. The classes might not have been quite as rigorous, but I felt as though we covered 95% of the topics/theory. The primary difference was math as we did not have to go through Diff eq. However we used alot of calculus in our classes. Because of this I felt as though I would not be progressing if I went to get a BSCE. Also, I felt that having a master's in a specialized field (water resources engineering) would open up doors for a career path where a PE license would not be an absolute requirement (i.e. Hydrologist, Water Management, etc.). I was accepted to a respected Civil Engineering program (my job experience and high GPA really helped). I was required to take the additional math through Diff Eq. I did that, and it was difficult but not a problem...I actually enjoyed the extra math courses. My undergraduate preparation in fluid mechanics, hydrology, hydraulics, soil mechanics helped me transition quite well to graduate level hydrology/hydraulics courses that included advanced theory, numerical modeling, etc. There were a few topics where I had to spend a little extra time, but for the most part I did well.
So what is my point? Now I am working for an organization where I analyze and solve large water resources related problems. I work around engineers who have masters and PhD's from highly respected programs all over the country. I have been here about a year and a half and I hit the ground running and have been able to learn and progress at a fast pace. I am planning to take the PE in a state that will allow me to in another year or so.
Having gone through all of this, I feel as though I am fully competent EIT/EI who has the background and capability to do my job in a way that keeps people safe. This is a result of all of my experience and combined education. If I could do it over again I would have pursued a BSCE from day 1. I think my Eng Tech program was unique and probably built more like an engineering program. As a young person entering college, I had no clue the difference between ABET/TAC and EAC. I just enrolled in the nearest school and chose to major in something "cool."
It is still hard to know that I may not be able to pursue certain jobs in certain states due to my education, however I have commited myself to becoming very very good in my field and I believe that I will be able to have a successful career in something I love to do.
So to answer your question in the article...If I were making the rules, I would allow Eng Tech graduates to pursue licensure, however I would say they need to demonstrate their ability through 1. Pass FE 2. Pass PE 3. Masters degree in Engineering from program that offers ABET/EAC undergrad (similar to 2020 plan) 4. 6 years of experience under a PE (instead of 4 years)
If someone can demonstrate all of those things, I would say they have proved they know what they need to know. Also, I have learned quickly that if you don't your stuff in this industry that you will be quickly weeded out.
Those are my thoughts as of right now. Thanks for the article.
 

Thursday, February 19, 2015 11:30 AM by Sam

This blog reminds me of my strange journey which began in 1980, which was the year I completed my associate degree in engineering technology (ET) and then discovered my local South Carolina university would not accept my credits toward a BS degree in Civil Engineering. This one simple meeting with their academic advisor changed the course of my college career. As recommended by my advisor, I thought I would “fix” the problem by simply transferring out of state to a highly regarded 4-year degree program in ET since all of my associate degree coursework would transfer. I was never informed about any future licensing issues, and I was clueless about any differences between ET and engineering undergraduate education. I graduated with a baccalaureate degree in Architectural Engineering Technology in 1984 and moved back to Columbia, SC. I discovered BSET graduates were not eligible for licensing in South Carolina. Angry but undeterred, I became so obsessed with licensure I drove to Atlanta to take the EIT (FE) in 1985, and passed on the first attempt. In the 1980’s, Florida was the closest state that would allow me to take the PE four years after graduation. In 1988 I drove to Jacksonville, Florida and passed the civil/structural PE on the first attempt. And get this…..I noticed that “National Council of Examiners for Engineering and Surveying, Clemson, South Carolina” was printed at the bottom of my exam. Was I dreaming? Nope. Honestly, you cannot make this stuff up. So here I was way back in 1988 – licensed as a PE in Florida, having passed the South Carolina PE exam developed at NCEES in Clemson, but living and working in South Carolina as a non-PE. When I explained the reason why to people, they were extremely confused. Why wouldn’t they be, since they knew I took the same exam that all other engineers in South Carolina took? I relocated to Charlotte in 1992, and was licensed in North Carolina by reciprocity. I eventually became licensed in South Carolina in 2009 after their laws were revised, requiring an extensive career portfolio submittal and formal interview process that took 15 months.
As strange as it may seem, I agree with NSPE regarding their stance on minimal educational requirements for PE licensure. Why? Because I believe uniformity is needed, and all 4-year degrees that could lead to PE licensure (regardless of what they are titled) should have the same basic undergraduate coursework requirements. ABET ETAC engineering technology degrees could be limited to associate degree programs, and BSET programs could be revised to become the equivalent of an applications-based ABET EAC BS in Engineering (BSE) degree. Graduates of associate degree programs could transfer to an EAC BSE degree program in order to achieve licensure if they want that career path. And just as critical, students in BSET programs who want to transfer to a BSE program and complete an ABET EAC degree should not have to climb Mt. Everest to do so.
One would think that creating a more cooperative curriculum between ET and engineering would have been achieved decades ago. Look, it’s not like we are comparing programs in Archeology versus Accounting. Most people in engineering circles know that BSET degrees emphasize more application and less theory. However, both types of graduates are usually working side by side at the same companies, performing similar duties with the same job title in most cases. This is particularly true in the design consulting business, and I have been there and done that for over 30 years. Every BSET graduate I have ever worked with has been employed in a capacity similar to a BSE graduate. Interesting isn’t it? If industry demands more design application in our college curricula, can we not make that happen within our EAC degree programs? Or do we need two separate curricula for graduates to end up in the same place doing the same job? How does a BSET student/graduate get from technologist to engineer if he/she wants an EAC BSE degree? The protocol from university to university for BSET students/graduates to earn an EAC BSE is all over the place, and is largely subjective. How do BSET graduates pursue MS degrees, and how do those who want to become PhD level professors get there without starting over? This graduate studies issue is just as important as professional licensure because it significantly impacts career options. Why create a terminal BS degree in the first place?
The academic/licensing community seems to emphasize certain core undergraduate coursework, and questions the rigor of BSET programs with respect to higher level theory and mathematics. What makes this so paradoxical is that hands-on design experience is the chief ingredient in preparing an intern engineer for professional licensing. Many state licensing boards want to see a more sophisticated math and theoretical background in undergraduate coursework, but in reality it is the ability to perform analysis and develop design calculations and details within our respective discipline’s standard of practice that gets engineers through the PE exam. It seems that ultimately what really matters is applications-based design experience. I cannot understand why this ET versus engineering issue continues today, and I feel it does not benefit our profession. I personally can confirm from a long career in professional practice – few people know or care about the term “technologist”, and I have personally never met anyone classified as such who was working in the design business. It is a term that is basically meaningless – you are considered either an engineer, an intern engineer, a designer, or a drafter/technician….period. The most peculiar aspect is that the career paths for BSE and BSET graduates are connected in many ways within industry, and these graduates are regarded as being similar, but in academia they are treated as being in two separate galaxies. Why such a major disconnect between academia and industry? The truth is that BSET education is misunderstood - it suffers from a lack of identity, a lack of appreciation in academic circles, and inconsistent organizational representation. Folks, if we are going to have two separate ABET 4-year degree programs for students to become professional engineers, the two programs must be equivalent in terms of academic standing.
In my opinion there should be one academic standard for undergraduate education for prospective engineers. The primary concern should be preparation for professional practice, and consistency should govern that preparation. BSET’s could be modified and retitled as applications-based EAC programs; it’s a simple choice actually – BSET’s either need to be made equivalent (however that is defined) to BSE’s, or phased out. Honestly, to expect students to devote four years of study to earn a baccalaureate degree and end up being potentially ineligible for PE licensure or engineering graduate studies makes no sense. Options after graduation are just too limited for BSET graduates. Thousands of BSET grads trying to trudge through the minefield of licensing laws, figuring out if their state is a go or no-go, having to wait longer for exam eligibility (a real head scratcher in itself with no defined rationale whatsoever), perhaps having to relocate to another state, wanting to do graduate work but feeling like they are at a dead end.…..this is ridiculous. Had their curricula been modified to be similar to a BSE, this would be a non-issue. The NSPE position is the best way forward – we desperately need nationwide consistency, and insisting on ABET EAC baccalaureate degrees is one way to achieve consistency. We as a profession need to develop a clearer picture of exactly what we are trying to achieve in our academic programs.
Example - consider calculus. I personally have never seen anyone in my entire career use calculus; actually I don’t think I have even heard the word mentioned unless someone was reliving their college days. Academia wants more theory, but industry, which drives the need for PE licensing, wants more application. Are we educating engineers to be more like scientists while industry is emphasizing design application? How much theory is needed at the undergraduate level? It depends on who you ask. Therein lies the problem. I completed two semesters of calculus, but have never used it since passing the FE exam in 1985. Is calculus needed in research? I would say very likely yes. But is it needed in professional practice and PE licensing? No, not from my experience. BSET’s require calculus, but not to the degree that BSE’s do. But if calculus is not used routinely in industry, how much is needed in undergraduate programs? I took two physics courses back in 1979, but they were not calculus-based. (Why is physics taught from two different perspectives in the first place?) Anyway, I can drive either a stick shift or automatic transmission to work each day, but as long as I get from point A to point B, does it matter which car I drive? Do we need calculus-based coursework if we are not using calculus-based analysis in professional practice? Should there not be a strong parallel between the BSE academic world and the industry we work in? That is supposedly why BSET’s were created, to bridge this perceived gap. News flash - why have a gap in the first place? Again, do we need two separate programs for satisfying the needs of the marketplace? Are we designing EAC BSE curricula to develop PE’s and supply the consulting industry with the skills it needs, or are we designing the curricula for potential PhD’s and careers in research? Or are we trying to do both? Can we do both?
There are perplexing differences between the undergraduate education that various engineering boards require for licensure and what universities require of students to be awarded a BSE or BSET degree. Even more astounding are the differences in attitude between various engineering schools when they compare BSE and BSET curricula, with some simply dismissing BSET courses as immaterial. It really is mind-boggling - it seems that at some engineering schools, BSET courses transfer about as well as courses in Art History, and that is no exaggeration. Case in point: the North Carolina Engineering Board, and most others, consider my undergraduate education acceptable for licensure. However, my local university considers my undergraduate education inadequate for even a reasonable class standing if I were to hypothetically pursue an EAC BSCE. Ok…..so think about this carefully. I am entrusted with designing structures and protecting the welfare of the public when doing so, and that certainly includes facilities at the college of engineering on this same university campus. Since my first set of sealed structural plans dating back to 1990, I have served as the Structural Engineer-of-Record on hundreds of projects, more than I could ever recollect – multi-story building design for commercial, industrial, educational, and military, post-earthquake/hurricane assessment and structural remediation, seismic retrofit, structural forensics, etc. But based on what my local university told me, to simply earn a BSCE I would need to complete over two years of full time coursework. ET coursework doesn’t transfer, and no explanation was given other than it’s “different”. Hmm, must be that mysterious “calculus versus non-calculus” thing again. Is re-taking physics using calculus somehow going to benefit my career after 31 years of practice? To reduce this down to a simple premise, consider this question: if serving as a Professional Engineer for designing structures at the university is not a problem, why is obtaining credit for their design related coursework for becoming an engineer in the first place a problem? So….hypothetically speaking, if I was enrolled I could be sitting in a classroom building that I designed as Engineer-of-Record, having to take classes that teach students how to analyze and design structures to become an Engineer-of-Record. Seriously?
Isn’t it time to acknowledge the issue and address the long term future of BSET degrees? Either level the playing field to create two unique programs of equal stature, or stick with one ABET EAC program, and stop kicking the can down the road.

Friday, March 06, 2015 2:54 PM by Lee

I agree. Like I said in my comments...I have a BSET and a Masters in Engineering.
At the end of the day, they are both preparing students for an engineering career. BSET I felt was geared more towards a career outside of academia, while the engineering program I went to prepared students for academia or other career paths.
I think my BSET program was outstanding and provided the background and foundation to do well in any design/analysis capacity. However, in certain states and organizations there are people who make the rules and requirements who are not looking at it objectively. They have an agenda to make BSET's less superior to Engineering grads...maybe due to an extra math class or two. That really is the only difference. I know because I have sat in the classrooms of both...The textbooks are the same, the equations are the same and the methods are the same. However, my BSET program added more applied experience to it which really helped in understanding and retaining concepts. The FE exam was easy and I am excited to take the PE soon.
They really do need to make a way for BSET's to be acceptable everywhere...or not have those programs at all.
 

Tuesday, May 19, 2015 10:12 AM by Sam

Add new comment

Filtered HTML

  • Web page addresses and e-mail addresses turn into links automatically.
  • Allowed HTML tags: <a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.